FDI based on pattern recognition using Kalman prediction: Application to an induction machine

نویسندگان

  • Olivier Ondel
  • Emmanuel Boutleux
  • Guy Clerc
  • Eric Blanco
چکیده

A pattern recognition technique associated with a new state estimator is developed in order to supervise electrical process. For this purpose, diagnostic features are extracted from current and voltage measurements for monitoring different operating modes. Then, a feature selection method is applied in order to select the most relevant features which define the feature space. In this frame, the classification is realized by a non-parametric method (‘‘k-nearest neighbors’’ rule) with reject options. However, this method does not take into account the evolution of the operating modes. Thus, it is necessary to enhance the initial knowledge database. For that, a polynomial approach allows characterizing the intermediate states of each operating modes and an original use of Kalman algorithm allows predicting the evolution of the partially known modes. A simple behavioral model is used to describe the evolution of the pattern vector. An estimation step provides the parameter of such model and a prediction step determines the future evolution of the pattern

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...

متن کامل

Diagnostic par reconnaissance des formes : application à un ensemble convertisseur - machine asynchrone. (Diagnosis by Pattern Recognition: application on a set inverter - induction machine)

Advances in power electronics, control circuits and automatic have contributed to an increasing use of induction motors in electrical drive systems. The large – scale utilization of induction motors is mainly due to their robustness, their power – weight ratio, and to their manufacturing cost. The appearance of variators making it possible to vary the rotational frequency largely supported its ...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...

متن کامل

An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2008